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Abstract. We study 
and we identify uithin them thc C3yIey-Klein algebras 31 3 n m d l y  disnnguished subser. 

graded conactions of h real compaa simple Lie algebra so(N i I), 

1. Introduction 

The idea of group contraction was first explicitly introduced by Inonu and Wigner [I], 
in relation to the study of the non-relativistic limit. In spite of a considerable body of 
literature (see [Z, 31 and references therein), contractions, both of groups and especially of 
representations, have remained an area full of difficulties. Recently, de Montigny and Patera 
[4], and Moody and Patera [SI have developed a more general formalism of contractions, 
making use of the theory of Lie gradings. The crucial property of graded contractions is 
that they preserve a chosen grading [61 of the Lie algebra L to be contracted. These ‘graded 
contractions’ contain as particular cases the lnonii-Wigner contractions, but they go well 
beyond these cases, and embrace into a unified framework the study of algebra contractions 
and their finite-dimensional representations. 

A nice feature of this approach is that the equations that determine all possible 
contractions of a Lie algebra L compatible with a given grading can be solved at once 
for all algebras admitting the same grading. Re€erence [4] contains tables for the grading 
groups &, iZ3 and ZZ @ ZZ. An interesting application of this theory [7] is the fact that 
a family of Zz @ iZz graded contractions of the algebra so(S) (or of any real form of the 
complex Lie algebra Bz) contains the kinematical algebras. (See f81, where an implicit use 
of gradings is also made in relation to kinematical groups.) 

In this paper we show how the classical family of (orthogonal) Cayley-Klein groups fits 
in a very natural way within the family of all ZFN graded contractions of so(N + 1). The 
name Cayley-Klein (CK) is linked with the appearance of these groups within the context 
of Klein’s consideration of most geometries as subgeometries of projectivegeometry and to 
Cayley’s theory of projective metrics (e.g. see [9, IO]). However, the complete classification 
of these systems was not given by Klein himself. The N = 2 case was studied under the 
name of ‘quadratic geometries’ by Poincark, using essentially a modern group-theoretical 
approach (e.g. see [ll]), and the classification for arbitrary dimension N was given in 1910 
by Sommerville [12], who showed that there are 3N different systems in dimension N, each 
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corresponding to a choice of the kind of measure of distance between points, lines, . . . , 
hyperplanes being either elliptic, parabolic or hyperbolic. 

From a modem point of view, these geomehies can be looked at as systems of interlinked 
sets of symmetric homogeneous spaces associated to a group G. In the general description 
for arbitrary N [13-151 (see also [16,17] for N = 2,3), a CK geometry is a system 
characterized by an N ( N  + l)/Zdimensional real Lie group G and a set of N basic 
commuting involutions S") of the corresponding Lie algebra 0. The generators of g invariant 
under the involutions (S@), .S(l), . . . , S'"-')) span N subgroups of G (H'O), H ( l ) ,  . . . , 
H"-')) which are considered as isotopy groups of a point, line, . . . , hyperplane (or ( N  - I)-  
flat) so that the N symmetric homogeneous spaces (G/H(O),  G / H ( ' ) ,  . . . , G/H@"')) are 
the spaces of points, lines, . . . , hyperplanes. The CK Lie group G itself is determined by 
N fundamental real parameters (KI. K Z ,  . . . , KN). Denoting by Jjj (i, j = 0, . . . , N ;  i < j )  
a basis of the CK Lie algebra g(x,,,,.,KM), we have the commutation relations [13-151 

F J Herranz et a1 

[ J i j ,  Jim] = &.hj - S j i J j ,  +8jmKimJii  + &rKijJjm (1.1) 

where i < I ,  j < m, and the coefficients ~ i j  are defined by xij = nA=j+lxm. 
i ,  j = 0,1,. . . , N ;  ( i  c j ) .  Each parameter K I ,  K Z ,  . . . , K N  is related to the kind of 
measure between two points, lines, . . . , hyperplanes, and can be rescaled to either 1 ,0  
or -1. For a positive, zero or negative value of each ~i the corresponding measure is 
respectively elliptic, parabolic or hyperbolic (hence the number 3N of essentially different 
CK systems). Alternatively, these coefficients can be related to the constant curvatures of 
the canonical connections on the symmetrical homogeneous spaces of points, lines, . . . , 
hyperplanes. A complete description will be given in a forthcoming paper [15], but we 
only remark here that when ~1 = ~ l ,  0, -1 and KZ = ~3 = . . . = K N  = 1, then the CK 
space of points G / H "  is identified to the standard sphere SN, to the Euclidean space EN 
or to the hyperbolic space WN as symmetric homogeneous spaces of constant curvature K, 

corresponding to the groups (1.1) which are in this case either SO(N+ I), E ( N )  f S O ( N )  
and S O ( N ,  1).  Therefore, these three well known Riemannian symmetric spaces can be 
thought of as particular cases of the CK scheme, where the distance between points is either 
elliptic, parabolic or hyperbolic, while all others distances (between lines, . . . , hyperplanes) 
are elliptic. 

The aim of this paper is two-fold. First, we define ZfN graded contractions of the real 
algebras so(N + 1) for arbitrary N .  Second, we show how the N-dimensional CK algebras 
appear as a distinguished family of these graded contractions of so(N + 1). The order of 
ZfN is larger than the dimension of &N+ l), so that the number of irrelevant contraction 
parameters grows rapidly as N increases. The strategy of first solving the contraction 
equations for a ZN x ZN symmetric contraction 'universal' matrix and then disregarding 
the elements which are irrelevant for the specific case under discussion is perhaps not the 
best choice. Therefore, we first identify all the relevant parameters for this grading of 
so(N + l), which fall into three classes, and only then do we write down in an adequate 
form the relevant contraction equations which are completely solved for a special case. 
Thus the place occupied by the CK algebras within the family of all graded contractions of 
so(N + 1) can be appreciated very easily. 

The paper is organized as follows. The next section presents a brief overview about 
graded contractions and of the particular ZfN grading we are using for so(N + 1). We 
classify the relevant contraction parameters, and we write the contraction equations. In 
section 3, we show how the CK algebras appear naturally as a subset of the graded 
contractions of so(N + l), and we briefly touch upon physical applications. 
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2. Z f N  graded contractions of so(N + 1) 

2.1. Graded contractions 

Let us recall briefly the theory of graded contractions of Lie algebras. Suppose L is a real 
Lie algebra, graded by an Abelian finite group r whose product is denoted additively. The 
grading is a decomposition of the vector space structure of L as 

(2.1) 

such that for x E L, and y E L, then [ x ,  y ]  belongs to L,+,. This is written as 

[L,, L J  G L,+, p. U, /I+ U E r . (2.2) 

A graded contraction of the Lie algebra L is a Lie algebra L, with the same vector 
space structure as L, but Lie brackets for x E L,, y E L,  modified as 

[ x .  yIB := E,,. [ x ,  y1 in short hand form ELp. L,], := [L,, L,] (2.3) 

where the contractionparameters E,.. are real numbers such that L, is indeed a Lie algebra 
[41. From antisymmetry and Jacobi identities, one easily gets the contraction equations: 

( 2 . 4 ~ )  
(2.4b) 

for all relevant values of indices. Condition (2.4~) means that E,,” can be looked at as a 
symmetric matrix (the contraction matrix, see [4,5] for more details). Each set of parameters 
E which is a solution of (2.4) defines a contraction; two contractions E( ’ ) ,  E(’) are equivalent 
if they are related by 

(without summation over repeated indices) where the r’s are non-zero real numbers which 
should be thought of as scalingfactors of the grading subspaces in the Lie algebra. 

Even if the contraction parameters associated with any pair of elements p. U in r seem 
to appear in (2.4), many of them will not, for two reasons. 

(1) In the direct sum (2.1) only those L,  which are proper subspaces must be considered; 
the set of grading group elements p actually appearing in the direct sum (2.1) is some 
subset of r. The E’S containing an index p outside this subset will not appear in the 
system (2.4). 

(2) It could happen that in the non-contracted algebra, all the elements x E L,  commute 
with the elements y E Ly; this situation will be denoted symbolically as [L,, L,] = 0. 
Of course, the parameters E , , ~  corresponding to [L,, L,] = 0 are also completely 
irrelevant and equations (2.4b) which contain such parameters do not appear. 

More details about graded contractions of Lie algebras are given in [4,18]: The 
analogous theory for the representations is described in [5]. 
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2.2. Ajinegrading for so(N + 1 )  

In this work we consider the family of graded contractions of so(N + I )  which preserve 
a ZfN fine grading. The algebra so(N + 1) has N(N + 1)/2 generators Jab, with 
U < b; (a. b = 0.1, . . . , N ) .  The non-zero Lie brackets are 

F J Herranz et a1 

(all Lie brackets involving four different indices a, 6 ,  a', 6' l i e  [Job,  Ja,b,] are equal to zero). 
The standard (N + 1) x (N + 1) matrix realization is 

Jab = -Enb 4- E h  a < b (2.7) 

where Eab is the matrix with a single entry of I at row a, column b, and zeros at the 
remaining entries. Throughout the paper we will use a, b, c, d as indices whenever these 
are implicitly assumed to appear ordered (as in the generators Job), and i, j ,  k, I ,  m where 
no ordering is implied. ' 

Let Z be the set of indices (0, 1, . . . , N I .  We denote by S any subset of Z and xs(i) 
the characteristic function over S: 

i f i e S  

We define a linear mapping Ss : so(N + 1) + so(N + l), associated with S as 

&Jab = ( - l ) ~ ~ ( " ) ' ~ s ( b ) J ~ b  . (2.9) 

The properties of Ss are as follow. 

(1) Ss is an involutive automorphism (i.e. it provides a & grading) of so(N + 1). 
(2) SS = Sqs (i.e. the automorphism associated to a subset S 2 Z is the same as the one 

associated to its complement z\S in the whole set of indices z). 
(3) For any two subsets S, S' of Z, we have Ss . Ss, = SSVS, . Ssns, = Sa(s,s,), where 

A(S, S') is the symmetric difference of the subsets S, SI. 

For instance, if Z = IO, 1,2,3), we have SIZ = SO3 = SOS3 = SOI&~ = SOI~SI = , . ., 
etc. 

From PrCperty (1) it follows that the generators Job, with either both indices or none 
at all in S, span the &-invariant subspace of the Lie algebra L = so(N + 1). whereas the 
anti-invariant generators (i.e. those multiplied by -1)  are the Jab with exactly one index in 
S. From property (2).  the total number of Ss is reduced from the number of subsets of Z 
to ZN different involutions. Finally, property (3) shows that all these involutions commute, 
so that they constitute an Abelian group r, isomorphic to Z f N .  This group is generated by 
N involutions, for instance 

SO, SOIT sol% . .. SO ... N - I .  (2.10) 

This particular set of involutions will play a special role, and sometimes we denote them 
simply as S(k) = &...k, k = 0. . . . , N - 1. 
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It is well known [6] that each set of commuting automorphisms of L determines a 
grading, so r becomes a grading ,$roup of so(N + 1). A generic element p E r can be 
written as a product of powers n,s’(S(k))pr, where pk E {O, 11. Relative to the system 
of generators (2.10) of r, p can be described by a string {pk)  = [pop l  . . .pN-,} of N 
elements containing 0’s and 1’s. Not all p E r are associated with a non-empty subspace 
L,. Using (2.9) one can verify that the basis element Job. a < b belongs to the grading 
subspace L,: 

,U = (0 ... 01 ... 10 ... 0) (2.11) - - - 
o b  

(Jab) = L,  

where all the 1’s are in a contiguous string, starting at the ath position and ending at the 
(b  - 1)th position, eventually preceded and/or followed by strings of 0’s. Therefore, out of 
the 2N elements p E r, only those N ( N  + 1)/2 elements of the form (2.11) have actual 
associated gading subspaces L,. All subspaces L, are one-dimensional and thus this ZfN 
grading is fine 161. 

2.3. The essential contraction parameters for thefine grading of so(N+I) 

Instead of using the complete string {pk) to describe /L when solving (2.4) it will prove 
very useful to denote the particular p (2.1 1) by the pair of indices p ab (a < b)  and to 
speak of a ,  b as the indices of p .  In the following, let p = ab, U = a’b’. 

The complete string associated to p + U is as follows. 

(1) A shtng with all zeros only if p = U (i.e. a = U’ and b = b‘; p and U have both indices 
in common). 

(2) A string with a single contiguous subsaing of 1’s if p and U have a single index in 
common. 

(3) A string with two substrings of 1’s. separated by O’s, if p and U have no indices in 
common. 

Cases (1) and (3) apparently produce grading group elements p + U without associated 
grading subspaces. However, the commutation relations (2.6) shows that in cases (1) and 
(3), and only in these cases, we have identically [ L p ,  L,] = 0. So, the only r e l e v a  
contraction coefficients E,.. are those with p, U of the form (2.11) and with a single index 
in common. They fall naturally into three disjoint subsets, 

By using the symmetry E$,” = E”., all these E can be expressed in terms of the three sets 
of relevant essential contraction parameters: 

%;bc E Eub.oe fl; Eab,bc yakc ~ , ~ , b ~  a < b < c .  (2.13) 

We sum up by classifying the contraction parameters into disjoint classes. 

Class 1. Irrelevant parameters (that do not appear in (2.4)), which consists of all E,.” where 
at least one of the complete strings of p., U or p + U is not of the form (2.11) (a single 
contiguous string of 1’s). 
Class 2. Relevant parameters, which are those E,.” where p ,  U and /L. + U have complete 
strings of the form (2.11) with a single string of 1’s. This class could be naturally split into 
three subclasses. 
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Class 2a. Elements ~ ~ h , ~ b , ;  essential elements (Y&. 

Class 2b. Elements 
Class 2c. Elements E ~ ~ , ~ , ~ ;  essential elements y . ~ ~ .  

The total number of (relevant and non-relevant) contraction parameters, taking into 
account only the symmetry (2.4a), is Z N ( Z N  + 1)/2, but they are reduced beforehand to 
3 ( ’ 3  essential relevant parameters upon which the contraction equations (2.4) have to 
introduce further relations. 

2.4. The contraction equations 

Whenever one considers contractions of Lie algebras or of their representations, the major 
problem is to solve the contraction-defining equations, often consisting of very large systems 
quite tedious to solve by hand. A computer program was devised to treat these cases [18]. 
However, in spite of the fact that the grading group Z:N is comparatively large, here we 
find it much more illuminating to analyse these equations in terms of the splitting of the 
relevant coefficients into the three classes (2a-2); the results are simple and transparent 
enough to justify this approach. 

= Ebc.ob; essential elements B,”, . 

So we set out to solve (2.46): 

E@.“ Ep+u,o = Ep,u+o. Ev,r (2.14) 

for all values of the three indices p., v ,  a’giving rise to relevant (class 2) E’S. An elementary 
analysis shows that for fixed p., v ,  which together determine a unique set of three different 
indices i ,  k ,  1 (see the comment above (2.12)), the only possibilities for a leading to relevant 
E’S in (2.14) are either U = p (in which case (2.14) reduces to an identity) or the indices of 
a are the index in v but not in p., and a new fourth index m, different from i ,  k ,  1. So for 
each set of four different indices, i ,  k ,  I ,  in, there is a relevant equation of the kind (2.14): 

~‘k.2 ~ 5 . l ~  = &$,if E:.+ i s  k ,  1 ,  m all different (2.15) 

where the arrow under each index pair means that these indices should always be put in their 
natural order (so ik stands for ik if i < k, but for ki if k < i ) .  Each of the E’S appearing 
in this equation belong to the relevant classes 2a-2c. Furthermore, (2.15) is invariant under 
the interchange of the first and the second pairs of indices, ik ff lm, so that out of the 
4! = 24 equations associated to each set of four different indices i, k ,  1 ,  m, only twelve 
equations are different. 

The next step through solving these equations is to rewrite them using the natural 
ordering for the four different indices, say a < b < c < d. and then replace all relevant 
E ’ S  by the relevant essential elements Lx&bc, p.”, , yob:e with a c b < c (see (2.13); e.g. 
~ b d . b ~  = Ebs,bd = abed, ~ ~ r l , b ~  = ~ b ~ , ~ d  = B&). The 12 equations are: 

P.“, 6,; = BA B& 

%:cd ybc:d = ‘%:he Yukd 

+ 

(2.16~) 
%:hcffb:sd = ~ l , : c ~  (2.16b) 

(2.16~) 

b 
%be BbSd = %:M BA %:hd %cd = ffqd 

%:bd Ybcd = %:hc Yac:d 

BA Yukd = Yoke Y6c.d (2.164 
a k c d  Y m ; d  = P.”, Yuh:d . (2.16e) 

b h 
p o d  Yawl = 8 u c  Ybs:d 

%cd @& = ffolhd Yuke 

Ba’d Yakd = Yukc Y m : d  

%cd B,; = B d  Yukc 
h 

There is a single equation involving only p ’ s ,  while all others relate E parameters belonging 
to either two subclasses or the three subclasses 2a-2c. This fact, which is emphasized in 
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the presentation of the set (2.16), would be difficult to see by solving the equations for 
E&.” by means of a computer program, because the special role played by the contraction 
parameters &.b,bc would not be highlighted. 

It is therefore clear that the strategy for solving the set of equations (2.16) is first to start 
with (2 .16~) .  and, for each set of p’s solving it, substitute into the remaining equations, 
which are then considerably simplified. It is not our goal here to provide the general solution 
of the complete system, but rather to see how the ‘simplest’ solutions lead exactly to the 
CK algebras. 

3. CK algebras as GN contradions of so(N + 1) 

3.1. Quasi-regular solutions to the grading equationr~ 

In the general case, the solutions of the contraction equations are classed into ‘regular’ (all 
E ’ S  different from zero) and ‘non-regular’ solutions (some E ’ S  equal to zero). Here we refine 
this classification and call “quasi-regular’ the solutions with all p: # 0. The ‘simplest’ 
quasi-regular solution of (2.16~~) has all p; = 1, a < b < c. (We shall see in section 
3.2 that any contraction with all p.”, # 0 is equivalent to a contraction with all 0: = 1, 
so these are essentially the only quasi-regular solutions.) Fixing p = 1, equations (2.16) 
reduce to 

ffa;be =%:ad f f k e d  = Yikc Yogd = Ybe;d (3.1~) 
ffu;cd = ffo:bd ffb;cd ffo:bcffb:sd Y a b d  = Yab:c Yomd = Yab:c Ybc:d (3.lb) 
ffa;cd %:bd Yobc Y a b d  = f f k c d  Yasd  ( 3 . 1 ~ )  
%:cd Yb+d f f c b c  Y a b d  f f q b d  Ybc.d = f f q b c  Y q d  (3.14 

where a < b < c < d. 
The first equation in (3 .1~~)  indicates that, as long as b < c, ffa;be does not depend on 

c, we may denote them as a two-index object, Aob = f f u ; b c .  Likewise, the third equation in 
(3.la) implies that &;d is actually independent of b as long as b < c, so we may denote it 
as ccd y 6 e ; d .  The remaining equation in the group (3.la) implies A b c  = Cb,. Replacing 
c&d = yakc = Abc in (3.1b)-(3.1d), all these equations reduce to a single independent 
equation for each set of three ordered indices: 

A,, = A u b A b c  a < b < C .  (3.2) 

If we call the inden difference of the object A n b  the positive integer b - a ,  then equations 
(3.2) express those A,, with a given index difference in terms of those with a smaller index 
difference. This means that ultimately only those A o b  with index difference equal to 1,  
A, := a = 1,2, . . . , N ,  will be independent. All other A,, are expressed in terms 
of A, as 

So, we have obtained the following theorem. 
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Theorem 1 .  Within the ansatz 0: = 1, any solution of the contraction equations (2.16) is 
determined by a set of N independent real numbers, A,, a = 1,. . . N ,  and is given by: 

F J Herranz et d 

(3.4) 
class 2C &oc,bc E Yabc = Ab+, ... A , .  

Those contractions with alI A, > 0 belong to the continuous type, all the others being 
of the discrete type (the continuous'or discrete character of a contraction is defined in [4]). 
The graded contractions of so(N + 1) with all A, # 0 and at least one A. < 0 provide the 
different non-compact real forms so@, 9 ) .  with p + q = N + 1, of so(N + 1). 

3.2. Equivalence between qwi-regular solutions 

Let us return now to (2.16). Under a general Scale change, Jab + rob Jobr (no sum in 
repeated indices!) with rob # 0, the essential relevant contraction coefficients change as 

(3.5) 

Now we set out to use the freedom allowed by these changes to reduce each possible 
solution of the contraction equations to some 'standard' form. 

the positive integer c - a .  
Due to the presence of a thiid index b (such that a < b c c)  the index difference of any 
p& is always greater than or equal to 2, and the number of different p& with the same 
pair ac is one less than their index difference. 

Consider the elements p:ziz, whose index difference is equal to 2. Each of them can 
be reduced to 1 (as long as they are different from zero) by adjusting the scale coefficients 
with the same index difference ra,o+z (i.e. take ro,a+2 = po,a+2 ro,o+~ r.+l,.+2, so that, 
according to (3.5). the new p:;$ + I). 

Now consider the elements pdf.':3, whose index difference is equal to 3. By using the 
same procedure, each of them can be reduced to 1 (as long as they are different from zero) 
by adjusting the scale coefficients r0,=+3 (i.e. take r0,0+3 = p:;i3 ra,=+i r0+l,u+3. so that 
the new p:zi3 + 1). By iteration, it is clear that this procedure reduces to 1 all those 
contraction coefficients p,":I, as long as they are non-zero. But the remaining p 's  are not 
independent, and should still satisfy (2.16~). In particular, if all = 1, these equations 
for a, a + 1, a + 2 and d imply 

We start with the p's. Let us call the indexdifference of 

U + l  

@"+I a+2 - O + l  a+2 
n . a + 2 B o , d  - B u . d  &+l.d 

so that 8:;' = 1. The same procedure with a,  a + 2, a + 3, d now implies p::3 = 1, 
and so on. Thus, once the p/:i are equal to 1, all p's are equal to 1. This justifies the 
statement made at the beginning of section 3.1. 

Now, it remains to exploit the freedom still left to reduce the remaining constants A, 
to some standard values. This should be done without spoiling the equalities ,5': = 1. 
By ( 3 3 ,  any further scale change with r,, = r,brb,, a < b < c, will keep unchanged 
the values of all p's. This means that the scale parameters ra,a+l (with index difference 
equal to 1) are the only free scaling coefficients, all the others being determined through 
the relation: 

rub = r ,  ,,+ I ~ , + I  .*+ z . . . rb- i ,b .  (3.6) 



Cayley-Klein algebras (w‘ graded contractions of so(N+I) 2523 

The behaviour of the remaining essential relevant contraction coefficients ‘YhLcd = yakc 
under such a scale change is 

a < b < c  (3.7) 

and in particular, the change for A, = A.-I,. = (Yo-l:ob is 

A, + A, (ra-,,,,)* a = 1,.  . . , N .  

As there are N free scaling coefficients ra-l.a, and N essential contraction parameters 
A, for the solution (3.4), it is clear that each A. can be reduced to the standard values 

(3.8) 

A a ~ { I , O , - l ) .  
We can sum up the results obtained in the previous paragraphs as follows. 

Theorem 2. Any quasi-regular solution to the contraction equations (2.16) can be reduced 
by equivalence to one of the 3N particular solutions determined in theorem 1 by a family 
of N values A,, a = 1, . . . , N ,  each A, taking values in the set [ 1 , 0 ,  -1). 

3.3. The CK algebras as the quasi-regular contracted algebras of so(N + 1) 

Once the pertinent solutions to the contraction equations have been determined, the 
contracted Lie algebra obtained from so(N + 1) (see (2.6)) with the contraction parameters 
E given in (3.4) has the following non-zero Lie brackets: 

[Jab, Jml = KabJbe 1 [Jam Jbcl KbcJob 

b 

[Jed, Jbel = -Jac ~ . b = n ~ i  a , b = 0 , 1 ,  ..., N (3.9) 
i=0+l 

a < b < c  

(all Lie brackets involving four different indices a, b, a’, 6‘ as [Jab, Jo,wl are again equal to 
zero). It is clear that (3.9) coincides with (l.l), so that the family of quasi-regular graded 
contractions of so(N + 1) leads exactly to the family of CK algebras, and the contraction 
parameters A. are to be identified with the geometrical constants K, appearing in the CK 
scheme. The commutation relations (3.9) include the Lie algebras of S O ( p ,  q)  ( p  + q = 
N + 1) when all K~ # 0, those of the inhomogeneous ZSO(p ,  q )  ( p  + q = N )  when, for 
instance, K I  = 0 but all other K~ # 0; as well as many other different algebras when more 
K, are equal to zero. It is a satisfying and unifying result to find that all of these groups, 
first studied in connection with projective geometry and then with projective mehics, come 
out as the more ‘regular’ family of graded contractions of so(N + 1). 

It is interesting to inquire about the geometrical meaning of the Inonii-Wigner (IW) 
type contractions ksociated to each of the 4 subgradings of our grading. Each of these 
contractions~is associated to an involution Ss. The effect of the 1w contraction is to perform 
a graded scale change (by a factor A) on the generators multiplied by -1  under Ss (i.e. 
those with a single index in S) and then to take the limit 1 + 0. The effect of this scale 
change on the parameters a i ; j k ,  ,6; and yjk;i can be described simply as follows. 

(1) If either both sets {i) and ( j k }  or none at all are contained in S, then the parameters 
ari:jk , fi$ and yjw:; do not change. 
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(2) If only one of these sets is contained in S, then the parameters q j i ,  

F J Herranz et a1 

and yjt;i 

S("' with the particular 
subsets S = IO, 1, . . . , M) are the contractions around a point in G/H(O) (for M = 0), a 
line in G / X ( ' )  (for M = l), . . . , a hyperplane in G/H(N-l)  (for M = N - 1). Due to the 
ordered nature of the indices in a, p ,  y l  it is clear that for these particular contractions the 
p ' s  do not change. The effect on the parameters A. is to make A"+l equal to zero. while 
keeping unchanged the remaining contraction parameters, in complete accordance with the 
geometrical interpretation. The coneactions associated to another type of subset of Z (for 
instance S = {OZ)) would describe the behaviour of a CK geometry near another kind of 
line, which may be of a different type to the standard one. For instance, a contraction of a 
Poincare group around a time-like line in Minkowski space leads to the Galilei group, while 
a contraction around a space-like line (which is of a different kind) leads to the Carroll 
group and to a different CK geometry. 

But these pN contractions do not exhaust all the possible relations within the CK scheme. 
For instance, sequences of IW contractions, which cannot be described as the limit of a scale 
change with factors either 1 or A, are included in the set of graded contractions. 

Let us now illustrate the result of theorem 2 by some examples. We first consider the 
two-dimensional case. The basis is {Jol.  502. J IZ} .  with commutation relations 

inherit a A' factor (so they vanish in the limit A + 0). 
In particular, the IW contractions related to the involutions Ss 

[ JOI , JOZI=KIJIZ [JoI.J~zI=-Joz [Joz, JIZI = QJOI . (3.10) 

Since N = 2, the ensuing CK algehras have a Z 2  @ ZQ grading generated by the 
automorphisms S@"' and S(') which act as (from (2.9)) 

s(') =So : (JOI, Joz, JIZ) -+ (-JOI, -Joz, JIZ) 

S(') (3.11) 
sol : (JOI, Jozr Jiz) -+ (JoI, -Joz, -Jiz). 

These involutions provide the so(3) basis with the following grading: 

Lioii = L I Z  = Viz)  LIIOI LOI = (Jod LIIII Loz = (Ja) (3.12) 

where the subscripts enclosed in braces (in L,) denote the complete string [1.1k), while the 
subscripts not in braces denote the indices of the relevant 1.1. The total number of relevant 
essential contraction parameters is 3(Ny) = 3 (one a, p ,  y each). With ,9 = 1, the others 
are related to the constants K. as 

K1Z = KZ i+ & l O i l , { l l )  (3.13) 

In these and in subsequent expressions,'the order of each pair of subindices in E has always 
been adjusted either in the lexicographic order when p is described by its complete string 
or in the order corresponding to the essential relevant elements when p is described through 
its indices. 

&02.12 G ff0i;Z Koi = KI ++ E[io),iii) =&01.02 e Y0:12. 

Now we consider the three-dimensional case, with basis 

IJoi, Joz, Jo3..J12. Jis, Jul. (3.14) 

The Z f 3  determines the grading subspaces: 

Lilwi Lo1 = (JoI) Liiioi = Loz = (Joz)  Liiiij =Lo3 = (Ja) 
(3.15) 

LIOIOI LIZ = (512) LIOiiI E L13 = (J13) Llo~il L23 = (523). 
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In this case, out of the 2N(2N + 1)/2 = 8(8 + 1)/2 = 36 contraction parameters only 
3(N:') = 3($) = 12 are the essential relevant ones-the four B's are'restricted to 1: 

I 2 

I 2 

1 .3 E(O1Ot.(IWt = EO1.12 = Bo2 

1 tf E[oI1t.(mot = &01,13 Bo3 

and the four remaining a's and y's are expressed in tenus of the A. E K=, a = 1,2,3: 

KOI = KI ++ {E[i~).[IIot = E [ i c q . [ i i i ) ]  = {EOI,OZ = &OI,m] E ~ 0 r O ; l Z  = %I3 1 
K o ~ = K I K z  t f ~ [ l l o ) , ~ l I l t  =&02.03 =ao,u 

K12 = Kz tf {E[010).(011t = ~(010).[110)1 = (El2.13 = E02.121 E {a1:23 = Y0l:Zl 

1 tf E~001t.101OI = E12.23 = B13 

1 tf &[W1t.u1ot = E02.23 E Pm 
(3.16) 

(3.17) 

(3.18) 

In summary, we have shown that the Lie algebras of the groups of motions of the 
N-dimensional CK geometries can be obtained as a naturally distinguished subset of ZFN 
contractions of the Lie algebra so(N + I), according to the scheme described above. The 
kinematical groups appear in this formalism as CK groups and they have been studied 
elsewhere both from the point of view of Z2 8 7& graded contractions of so(5) 171, and in 
relation to CK groups and their quantum deformations [16,17]. The relationship with the 
present work can be established easily by considering the six possible ZZ 8 Z2 subgradings 
of the Zf4 grading we have considered for the case N = 4; only two are compatible with 
the kinematical group requirements. We refer the interested reader to [7] for a more detailed 
account 

A last question would be the following. Do the contraction parameters correspond 
to physical parameters? There is indeed a direct connection in some cases. In the usual 
non-relativistic limit, l/c2 appears as the contraction parameter A2 associated to time-like 
lines, while AI (associated to points) is to be identified with the curvature of the De Sitter 
spacetime (either 1/R2 or -1/R2) when contracting from the De Sitter to the Minkowski 
space. Similar interpretations can also be made for other contraction parameters. 
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