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Abstract. We study Z2V graded contractions of the real compact simple Lie algebra so(N +1),
and we identify within them the Cayley-Klein algebras as a naturally distinguished subset.

1. Introduction

The idea of group contraction was first explicitly introduced by Inénii and Wigner [1],
in relation to the study of the non-relativistic limit., In spite of a considerable body of
literature (see [2, 3] and references therein), contractions, both of groups and especially of
representations, have remained an area full of difficulties. Recently, de Montigny and Patera
[4], and Moody and Patera [5] have developed a more general formalism of contractions,
making use of the theory of Lie gradings. The crucial property of graded contractions is
that they preserve a chosen grading [6] of the Lie algebra L to be contracted. These “graded
contractions’ contain as particular cases the Inénii-Wigner confractions, but they go well
beyond these cases, and embrace into a unified framework the study of algebra contractions
and their finite-dimensional representations.

A nice feature of this approach is that the eguations that determine all possible
contractions of a Lie algebra L compatible with a given grading can be solved at once
for all algebras admitting the same grading. Reference [4] contains tables for the grading
groups Z;, Zz and Z ® Z,. An interesting application of this theory [7] is the fact that
a family of Z, ® Z, graded contractions of the algebra so(5) (or of any real form of the
complex Lie algebra B} contains the kinematical algebras. (See {8], where an implicit use
of gradings is also made in relation to kinematical groups.)

In this paper we show how the classical family of (orthogonal) Cayley-Klein groups fits
in a very natural way within the family of all Z?N graded contractions of so(N + 1). The
name Cayley—Klein (CK) is linked with the appearance of these groups within the context
of Klein’s consideration of most geometries as subgeometries of projective geometry and to
Cayley’s theory of projective metrics (e.g. see [9, 10]). However, the complete classification
of these systems was not given by Klein himself. The N = 2 case was studied under the
name of ‘quadratic geometries’ by Poincaré, using essentially a modern group-theoretical
approach (e.g. see [11]), and the classification for arbitrary dimension N was given in 1910
by Sommerville [12], who showed that there are 3" different systems in dimension N, each
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corresponding to a choice of the kind of measure of distance between points, lines, ...,
hyperplanes being either elliptic, parabolic or hyperbolic.

From a modern point of view, these geometries can be looked at as systems of interlinked
sets of symmetric homogeneous spaces associated to a group G. In the general description
for arbitrary N [13-15] (see also [16,17] for N = 2,3), a CK geometry is a system
characterized by an N(¥ + 1)/2-dimensional real Lie group G and a set of N basic
commuting involutions $*) of the corresponding Lie algebra g. The generators of g invariant
under the involutions (§@, §M, ..., §%=1 span N subgroups of G (H®, HD, ...,
H®W-1)) which are considered as isotopy groups of a point, line, ..., hyperplane (or (N —1)-
flat) so that the N symmetric homogeneous spaces (G/H®, G/HW, ..., G/HWN-1Y are
the spaces of points, lines, ..., hyperplanes. The CK Lie group & itself is determined by
N fundamental real parameters {x1, <2, ..., ky}. Denoting by Ji; (¢4, j =0,...,N;i < )
a basis of the CK Lie algebra g, ..y, we have the commutation relations [13-15]

{ijs Jim] = Simdy; — 8j1Jim + Sk it + BisKij Jim (1.1
where i £ I, j < m, and the coefficients x;; are defined by «; = H,{,=E+1 Koo
iLj = 0,1,...,N; (i < j). Each parameter «y, ¥z, ..., &y is related to the kind of

measure between two poiats, lines, ..., hyperplanes, and can be rescaled to either 1,0
or —1. For a positive, zero or negative value of each k; the corresponding measure is
respectively elliptic, parabolic or hyperbolic (hence the number 3" of essentially different
CK systems). Alternatively, these coefficients can be related to the constant curvatures of
the canonical connections on the symmetrical homogeneous spaces of points, lines, ...,
hyperplanes. A complete description will be given in a forthcoming paper [15], but we
only remark here that when x; =-1,0,—1 and #3 = 63 = .- = gy = 1, then the CK
space of points G/H is identified to the standard sphere S¥, to the Euclidean space E¥
or to the hyperbolic space H" as symmetric homogeneous spaces of constant curvature &
corresponding to the groups (1.1) which are in this case either SO(N+1), E(N) = [SO(N)
and SO(N, 1). Therefore, these three well known Riemannian symmetric spaces can be
thought of as particular cases of the CK scheme, where the distance between points is either
elliptie, parabolic or hyperbolic, while all others distances (between lines, ..., hyperplanes)
are elliptic.

The aim of this paper is two-fold. First, we define Z?N graded contractions of the real
algebras so(N + 1) for arbitrary N. Second, we show how the N-dimensional CK algebras
appear as a distinguished family of these graded contractions of s¢(W + 1). The order of
Z?N is larger than the dimension of so(N + 1), so that the number of irrelevant contraction
parameters grows rapidly as N increases. The strategy of first solving the contraction
equations for a 2¥ x 2" symmetric contraction ‘universal’ matrix and then disregarding
the elements which are irrelevant for the specific case under discussion is perhaps not the
best choice. Therefore, we first identify all the relevant parameters for this grading of
so(N -+ 1), which fall into three classes, and only then do we write down in an adequate
form the relevant contraction equations which are completely solved for a special case.
Thus the place occupied by the CK algebras within the family of all graded contractions of
so(N + 1) can be appreciated very easily.

The paper is organized as follows. The next section presents a brief overview about
graded contractions and of the particular Z®Y grading we are using for so(¥ -+ 1). We
classify the relevant contraction parameters, and we write the contraction equations. In
section 3, we show how the CK algebras appear naturally as a subset of the graded
contractions of so(N + 1), and we briefly touch upon physical applications.
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2. Z&N graded contractions of so(N + 1)

2.1. Graded contractions

Let us recall briefly the theory of graded contractions of Lie algebras. Suppose L is a real
Lie algebra, graded by an Abelian finite group I" whose product is denoted additively. The
grading is a decomposition of the vector space structure of L as

L=PtL, (2.1)

pel

such that for x € L, and y € L, then [x, y] belongs to Ly..,. This is written as
(L Lu] € Lpry v, p+ver. 2.2)

A graded contraction of the Lie algebra L is a Lie algebra L, with the same vector
space structure as L, but Lie brackets for x € Ly, ¥ € L, modified as

[x, ¥]e =&, [x, ¥] in short hand form [L,, Ly); ==&y, [Ly. L] (2.3)

where the contraction parameters €, are real numbers such that L. is indeed a Lie algebra
[4]. From antisymmetry and Jacobi identities, one easily gets the contraction equations:

Epw = By (2.4a)

EuvEptve = €y vte Eue (2.4b)

for all relevant values of indices. Condition (2.4a) means that £, , can be looked at as a
symmetric matrix (the contraction matrix, see [4, 5] for more details). Each set of parameters
& which is a solution of (2.4) defines a contraction; two contractions £V, £@ are equivalent
if they are related by :

2 _ (1)7 Tty
e® — g Tely (2.5)
pt e Futv .

(without summation over repeated indices) where the r’s are ron-zero real numbers which
should be thought of as scaling fuctors of the grading subspaces in the Lie algebra.

Even if the contraction parameters associated with any pair of elements g, v in " seem
to appear in (2.4), many of them will not, for two reasons.

(1) In the direct sum (2.1) only those L, which are proper subspaces must be considered;
the set of grading group elements (& actually appearing in the direct sum (2.1) is some
subset of I". The &’s containing an index u outside this subset will not appear in the
system (2.4).

(2} It could happen that in the non-contracted algebra, all the elements x € L, commute
with the elements y € L,; this situation will be denoted symbolically as [L,, L,] =0.
Of course, the parameters g, , corresponding to [L,, L,] = 0 are also completely
irrelevant and equations (2.4b) which contain such parameters do not appear.

More details about graded contractions of Lie algebras are given in [4,18)" The
analogous theory for the representations is described in [5].
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2.2. A fine grading for so(N + I)

In this work we consider the family of graded contractions of so(N + 1) which preserve
a Z®¥ fine grading. The algebra so(N + 1) has N(N + 1)/2 generators Jp, with
a<b{a,b=0,1,..., N). The non-zero Lie brackets are

[Jab, Jael = Jpe
a<bh<c Fapy Jpe) = —due (2.6)
[Vac, Jpel = Jap

(all Lie brackets involving four different indices a, b, &', " like [Jap, Jyp] are equal to zero).
The standard (N + 1) x (¥ + 1) matrix realization is

Jab = —Eab + Eba a< b . (2.7)

where Ezp is the matrix with a single entry of 1 at row 4, column b, and zeros at the
remaining entries. Throughout the paper we will use a, b, ¢, & as indices whenever these
are implicitly assumed to appear ordered (as in the generators Jyp), and i, j. k, [, m where
no ordering is implied.
Let T be the set of indices {0, 1,..., N}. We denote by & any subset of 7 and xs()
the characteristic function over S:
N ! ifie8
Xs (5} {0 ifigs. @8

We define a linear mapping Sg : so(N -+ 1} — se(N + 1), associated with & as
Ssdap = (~LYHEO 1, 29)

The properties of Sg are as follow.

(1) Ss is an involutive automorphism (i.e. it provides a Z, grading) of se(N + 1).

(2) 8¢ = Sns (i.e. the automorphism associated to a subset & € T is the same as the one
associated to its complement T\S in the whole set of indices 7).

(3) For any two subsets S, 8" of Z, we have S5 - Sg = Ssus - Ssns' = Sacs,s), where
A(S, &) is the symmetric difference of the subsets 8, &'.

For instance, if 7 = {0, 1,2, 3}, we have 82 = Spz = 553 = Sp1513 = So1351 =+ - -,
ete.

From property (1) it follows that the generators Jup, with either both indices or none
at all in &, span the Sg-invariant subspace of the Lie algebra L = so(N + 1), whereas the
anti-invariant generators (i.e. those multiplied by —1) are the J,;, with exactly one index in
&. From property (2), the total number of Sg is reduced from the number of subsets of 7
to 2V different involutions. Finally, property (3) shows that all these involutions commute,
so that they constitute an Abelian group I', isomorphic to Zf” . This group is generated by
N involutions, for instance

So,  So1. Sorzx ... So_n-a- 2.10)

This particular set of involutions will play a special role, and sometimes we denote them
simply as % = 8y 4, k=0,...,N—1.
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It is well known [6] that each set of commuting automorphisms of L determines a
grading, so I' becomes a grading group of so(N + 1). A generic element ;¢ € I' can be
written as a product of powers Hk;OI(S("))“*, where 1 € {0, 1}. Relative to the system
of generators (2.10) of I, u can be described by a string {1} = {poptr ...y} of N
elements containing (s and 1’s. Not all 2 € [ are associated with a non-empty subspace
L,. Using (2.9) one can verify that the basis element Jop, ¢ < b belongs to the grading

subspace L,:

(Jw) =L, = #={0...01...1...0} (2.11)

where all the 1’s are in a contiguous string, starting at the ath position and ending at the
(b — 1)th position, eventually preceded and/or followed by strings of (’s. Therefore, out of
the 2V elements i € T, only those N(N + 1)/2 elements of the form (2.11) have actual
associated grading subspaces L,. All subspaces L, are one-dimensional and thus this Z3N
grading is fine [6].

2.3. The essential contraction parameters for the fine grading of so(N+1)

Instead of using the complete string {1} to describe ¢ when solving (2.4) it will prove
very useful to denote the particular u (2.11) by the pair of indices . = ab (a < b} and to
speak of a, b as the indices of w. Tn the following, let jx = ab, v = a'?’.

The complete string associated to u + v is as follows.

(1} A string with all zeros only if & = v (i.e. @ == ¢" and b = &'; & and v have both indices
in common). ' i

(2) A string with a single contiguous subsiring of 1°s if 4 and v have a single index in
common.

(3) A string with two substrings of 1's, separated by O’s, if ¢ and v have no indices in
common.

Cases (1) and (3) apparently produce grading group elements p < v without associated
grading subspaces. However, the commutation relations (2.6) shows that in cases (1) and
(3), and only in these cases, we have identically [L,, L,] = 0. So, the only relevant
contraction coefficients &, are those with u, v of the form (2.11) and with a single index
in common. They fall naturally into zhree disjoint subsets,

Eubab’ Eab,bec = Ebe,ab Eac,a'c - (212)

By using the symmetry g, , = &, all these £ can be expressed in terms of the three sets
of relevant essential contraction parameters:

— b_ _
gipc = Eabae Bz = Eabbe Vabic = Eacbe a<b<ec. (2.13)

We sum up by classifying the contraction parameters into disjoint classes.

Class 1. Irrelevant parameters (that do not appear in (2.4)), which consists of all ¢, , where
at least one of the complete strings of @, v or ¢ + v is not of the form (2.11) (a single
contiguous string of 1's).

Class 2. Relevant parameters, which are those ¢, , where &, v and 1 + v have complete
strings of the form (2.11) with a single string of 1’s. This ¢lass could be naturally split into
three subclasses.
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Class 2a, Elements £4p,05; essential elements opp, .

Class 2b. Elements £gp bc = Zbc.qp; €8sential elements ;8‘};.
Class 2¢. Elements g4.,q/c; essential elements ypp:c .

The total number of (relevant and non-relevant) contraction parameters, taking into
account only the symmetry (2.4a), is 2V (2" + 1)/2, but they are reduced beforehand to
S(N_;"' I) essential relevant parameters upon which the contraction equations (2.4) have to
introduce further relations.

2.4. The contraction equations

Whenever one considers contractions of Lie algebras or of their representations, the major
problem is to solve the contraction-defining equations, often consisting of very large systems
quite tedious to solve by hand. A computer program was devised to treat these cases [18].
However, in spite of the fact that the grading group Zf” is comparatively large, here we
find it much more illuminating to analyse these equations in terms of the splitting of the
relevant coefficients into the three classes (2a-2c); the resuits are simple and transparent
enough to justify this approach.
So we set out to solve (2.45):

&y Cutve = Ep,vio Euo (2.14)

for all values of the three indices u, v, o giving rise to relevant (class 2} &’s. An elementary
analysis shows that for fixed g, v, which together determine a unique set of three different
indices f, k, ! (see the comment above (2.12)), the only possibilities for ¢ leading to relevant
£’s in (2.14) are either o = p (in which case (2.14) reduces to an identity) or the indices of
¢ are the index in v but not in w, and a new fourth index =, different from i, k,I. So for
each set of four different indices, i, k, [, m, there is a relevant equation of the kind (2.14):

Eik il Exlim = Eik,im Eillm i, k,i, m all different 2.15)
where the arrow under each index pair means that these indices should always be put in their
natural order (so ik stands for ik if { < &, but for ki if k¥ < ). Bach of the £°s appearing

=
in this equation belong to the relevant classes 2a~2c. Furthermore, (2.15) is invariant under
the interchange of the first and the second pairs of indices, ik < Im, so that out of the
4! = 24 equations associated to each set of four different indices i, %, !, m, only rwelve
equations are different.

The next siep through solving these equations is to rewrite them using the natural
ordering for the four different indices, say @ < b < ¢ < d, and then replace all relevant
£’s by the relevant essential elements oty , ﬁa‘z, Vape With @ < b < ¢ (see (2.13); e.g.
Ebd.bc = Ebebd = Chicd s Ecd b = Ebe,cd = Ppy ). The 12 equations are:

Bat By = Bant By (2.16a)
Aasbe Brg = arvd Bug Cg:bd Ohied = Qa;ed ,8‘,’: Cg.pe Upyed = Clayed ﬂa’:! (2.165)
Clared Vooyd = Quibe Vabid b Voed = Waipe Yacid (2.16¢)
B Vacia = BL Voo Boa Yabid = Yabic Yacd By Vabia = Vabye Yocd  (2.16d)
Quicd Bpa = Clapd Vabic Cpcd Buyg = ﬁaff Yabie Uhicd Yacd = Bai Vabid - (2.10e)

There is a single equation involving only 8’s, while all others relate &£ parameters belonging
to either two subclasses or the three subclasses 2a-2c. This fact, which is emphasized in
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the presentation of the set (2.16), would be difficult to see by solving the equations for
£, by means of a computer program, because the special role played by the contraction
parameters £gp,5. Would not be highlighted,

It is therefore clear that the strategy for solving the set of equations (2.16) is first to start
with (2.16a), and, for each set of £’s solving it, substitute into the remaining equations,
which are then considerably simplified. It is not our goal here to provide the general solution
of the complete system, but rather to see how the ‘simplest’ solutions lead exactly to the
CK algebras.

3. CK algebras as Z?N contractions of so(lV +1})

3.1. Quasi-regular solutions to the grading equations’

In the general case, the solutions of the contraction equations are classed into “regular’ (all
&’s different from zero) and ‘non-regular’ sofutions (some &°s equal to zero). Here we refine
this classification and call “quasi-regular’ the solutions with all 8.2 # 0. The ‘simplest’
quasi-regular solution of (2.16) has all 82 = 1, a < b < ¢. (We shall see in section
3.2 that any contraction with aff 8.2 # 0 is equivalent to a contraction with all 82 = 1,
so these are essentially the only quasi-regular solutions.) Fixing § = 1, equations (2.16)
reduce to ’ .

Cu:be = Capd Cbred = Vibie Yac:da = Veeid (3.1a)
Qgicd = Cg.bd Ohicd = Cg;pec Ebyed Yabi:d = Vabic Yac;d = Vabic Yocid (3.15)
Ngred = Qg bd Yabie Vabrd = Cp:cd Vaed 7 (3.1c)
Karod YVocd = Caibe Yabid Ya;bd Yoc,d = ®Xa;be Vacd (3.1d)

wherea < b <c <d.

The first equation in (3.1a) indicates that, as long as b < ¢, g5 does not depend on
¢, we may denote them as a two-index object, A,y = 00,4, . Likewise, the third equation in
(3.1a) implies that pp.y is actually independent of b as long as & < ¢, so we may denote it
as Co = Vpea - The remaining equation in the group (3.1a) implies Ay = Cp.. Replacing
Wpeed = Vape = Ape in (3.16)~(3.1d), all these equations reduce to a single independent
equation for each set of three orderad indices:

Ay = AupApe a<h<e. (3.2)

If we call the index difference of the object A, the positive integer b — a, then equations

(3.2) express those A, with a given index difference in terms of those with a smaller index

difference. This means that ultimately only those A, with index difference equal to 1,

g = As14, Ga=12,..., N, will be independent. All other A, are expressed in terms
of A, as

Aac = Aa+1Aa+2 e AC . (3.3)

So, we have obtained the following theorem.



2522 F J Herranz et al

Theorem 1. Within the ansatz 8,2 = 1, any solution of the contraction equations (2.16) is
determined by a set of N independent real numbers, A,, a =1, ... N, and s given by:

Class 2a Eabac = Cpbe = Aat1.. Ap
Class 2b Sabpe =B =1 (3.4
Class 2¢ Eacbe = Vabie = Ap+i .- Ac.

Those contractions with all A; > O belong to the continuouns type, all the others being
of the discrete type (the continuous'or discrete character of a contraction is defined in [4]).
The graded contractions of so(N -4 1) with all A, # 0 and at least one A, < O provide the
different non-compact real forms se(p, g), with p+g =N + 1, of so(N + 1).

3.2. Eguivalence between quasi-regular solutions

Let us return now to (2.16). Under a general scale change, J;p — rap Jap, (00 sum in

repeated indices!) with r,p 3% 0, the essential relevant contraction coefficients change as
Tap¥ac b TabTbe Factbe
.3 ‘3 Yubic > Vabic .

be . Fae Tap

(3.5)

Quzpe —* Olgibe

Now we set out to use the freedom allowed by these changes to reduce each possible
solution of the contraction equations to some ‘standard’ form.

We start with the 8’s. Let us call the index difference of ﬁai the positive integer ¢ —a.
Due to the presence of a third index & (such that a < b < ¢} the index difference of any
B2 is always greater than or equal to 2, and the number of different 82 with the same
pair ac is one less than their index difference.

Consider the elements 8%, , whose index difference is equal to 2. Each of them can
be reduced to 1 (as long as they are different from zero) by adjusting the scale coefficients
with the same index difference r, 40 (ie. take rgg4n = ,Ba"’:“ _,{2 Fa,a+1 Yatl,e+2, 50 that,

according to (3.5), the new 82, — 1).

Now consider the elements ﬁ:;"_é , whose index difference is equal to 3. By using the
same procedure, each of them can be reduced to 1 (as long as they are different from zero)
by adjusting the scale coefficients ry z+3 (Le. take rpq43 = ,Bn"‘j_ﬂa Fa,at1 Yatl,e+3, SO that
the new ﬁa“j_ig — 1). By iteration, it is clear that this procedure reduces to 1 all those
contraction coefficients 8,%F!, as long as they are non—zero. But the remaining 3’s are not
independent, and should still satisfy (2.16a). In particular, if all 8, “+1 = 1, these equations
fora,a+1,a+2 and 4 imply

‘Ba+1 ﬁu+2__ a+t pnoatd
a,a+2 u,d Fatl,d

so that 852 = 1. The same procedure with a,a + 2,a + 3,d now implies 8%1° = 1,
and so on. Thus once the B, 7! are equal to 1, all B’s are equal to 1. This justlﬁes the
staternent made at the becmnmg of section 3.1.

Now, it remains to exploit the freedom still left to reduce the remaining constants A,
to some standard values. This should be done without spoiling the equalities 87 = 1.
By (3.5), any further scale change with ry, = rapree, @ < b < ¢, will keep unchanged
the values of all 8’s. This means that the scale parameters ry 44 (with index difference
equal to 1) are the only free scaling coefficients, all the others being determined through
the relation:

Tab = Faat1latlat2-«-Th=l,b- (3.6)
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The behaviour of the remaining essential relevant contraction coefficients ap.cy = Vip;c
under such a scale change is
Thelbd Foelhelcd

Cpied — Upicd =Opied —— = Upicd (rbc)z a<b< 4 (3.7)
Ted Yed

and in particular, the change for A, = Ag—145 = 0g_1.0p 18
Ag = Ag (rac1 )’ a=1,...,N. (3.8)

As there are N free scaling coefficients r;—y 4, and N essential contraction parameters
A, for the solution (3.4), it is clear that each A, can be reduced to the standard values
A €1{1,0, -1}

We can sum up the results obtained in the previous paragraphs as follows.

Theorem 2. Any quasi-regular solution to the contraction equations (2.16) can be reduced
by equivalence to one of the 3¥ particular solutions determined in theorem 1 by a family
of N values A4,,a=1,..., N, each A, taking values in the set {1,0, —1}.

3.3. The CK algebras as the quasi-regular contracted algebras of so(N + 1)

Once the pertinent selutions to the contraction equations have been determined, the
contracted Lie algebra obtained from so( - 1) (see (2.6)) with the contraction parameters
£ given in (3.4) has the following non-zero Lie brackets:

[abs Jael = Kappe

b
a<b<c [Jag, Jocl = —dac Kap = I'[ ; ab=01,....,N (3.9
f=a+1
[acs Jbe]l = KpeJap

(all Lie brackets involving four different indices a, b, @', &’ as [/, Jopr] ale again equal to
zero). It is clear that (3.9) coincides with (1.1), so that the family of quasi-regular graded
contractions of so(N + 1) leads exactly to the family of CK algebras, and the contraction
parameters A, are to be identified with the geometrical constants &, appearing in the CK
scheme. The commutation relations (3.9) include the Lie algebras of SO(p,q) (p +¢q =
N + 1) when all «, # 0, those of the inhomogeneous ISO(p,q) (p+g = N) when, for
instance, x7 = 0 but all other «, # 0; as well as many other different algebras when more
k, are equal to zero. It is a satisfying and unifying result to find that all of these groups,
first studied in connection with projective geometry and then with projective metrics, come
out as the more ‘regular’ family of graded contractions of so(N + 1).

It is interesting to inquire about the geometrical meaning of the Indnti-~Wigner (IW)
type contractions dssociated to each of the Z, subgradings of our grading. Each of these
conftractions-is associated to an involution Ss. The effect of the TW contraction is to perform
4 graded scale change (by a factor A) on the generators multiplied by —1 under Sg (ie.
those with a single index in &) and then to take the limit A — . The effect of this scale
change on the parameters o, jz , ﬁj}; and y4.; can be described simply as follows.

(1) X either both sets {i} and {jk} or none at all are contained in S, then the parameters
ti;jk » By and ¥jr; do not change.
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(2) If only one of these sets is contained in &, then the parameters o i, ﬁji and ik
inherit a A% factor (so they vanish in the limit A — 0).

In particular, the IW contractions related to the involutions Sg = S with the particular
subsets S = {0, 1, ..., M} are the contractions around a point in G/H® (for M =0), a
line in G/H (for M = 1), ..., a hyperplane in G/HW-D (for ¥ = N —1). Due to the
ordered nature of the indices in «, 8, y, it is clear that for these particular contractions the
B’s do not change. The effect on the parameters A, is to make Ay, equal to zero, while
keeping unchanged the remaining contraction parameters, in complete accordance with the
geometrical interpretation. The contractions associated to another type of subset of T (for
instance & = {02}) would describe the behaviour of a CK geometry near another kind of
line, which may be of a different type to the standard one. For instance, a contraction of a
Poincaré group around a time-like line in Minkowski space leads to the Galilei group, while
a contraction around a space-like line (which is of a different kind) leads to the Carroll
group and to a different CK geometry.

But these IW contractions do not exhaust alt the possible relations within the CK scheme.
For instance, sequences of I'w contractions, which cannot be described as the limit of a scale
change with factors either 1 or A, are included in the set of graded contractions,

Let us now illustrate the result of theorem 2 by some examples. We first congider the
two-dimensional case. The basis is {Jo;, Jo2, J12}, with commutation relations

[Jo1. Joz] = k1J12 [Jot, Fi2] = —Joz [Joz, Jial = k2doy . (3.10)

Since N = 2, the énsuing CK algebras have a Zs ® Z, prading generated by the
automorphisms $@ and S which act as (from (2.9))

SO = 8y 1 (Jo, Joz, J12) —> (=Jor, —Joz, J12) .11
S® = Sy = oty oz, J12) —> (Jor, —Joz, =J12) -

These involutions provide the so(3) basis with the following grading:
Loy = Lz = (J12) Ly = Loy = {Jo1) Ly = Loy = (Jo) (3.12)

where the subscripts enclosed in braces (in L,) denote the complete string {1}, while the
subscripts not in braces denote the indices of the relevant w. The total number of relevant
essential contraction parameters is 3(";') = 3 (one @, 8, y each). With 8 = 1, the others
are related to the constants &, as

K12 = K3 > Eo11,(11}) = So2,12 = o1z Kor = K| <> Eqrop 11} = 801,02 = Yoz (3.13)

In these and in subsequent expressions, the order of each pair of subindices in & has always
been adjusted either in the lexicographic order when u is described by its complete string
or in the order corresponding to the essential relevant elements when u is described through
its indices. :

Now we consider the three-dimensional case, with basis

{Jot, Joz, Jos.. J12, J13,5 2} (3.14)
The Z$* determines the grading subspaces:

Litooy = Loi = {Jor) L = Loz = {(Jo) Lyny = Loz = {Jo3)

(3.15
Loy = L1z = {(J12) Loy = Lz = (Jia) Ligoy = Lz = (Jm) .
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In this case, out of the 2¥(2¥ 4-1)/2 = 8(8 + 1)/2 = 36 contraction parameters only
3("") = 3(3) = 12 are the essential relevant ones—the four A’s are restricted to 1:

L& epioniion = 8oz =Bz 1 Soou o101 = 1223 = By (3.16)
1« £p11y,q1004 = £o1,13 = ﬁo:lg 1 < eoLn i1 = Spp,23 = )80%

and the four remaining «’s and ’s are expressed in terms of the A; = x,,a=1,2,3:

ko1 = K1 <> {Eq00y,1110: = 8{1001.[111}} = {801,020 = £o1,03} = {0tp;12 = ;13 }

Kgp = K1k <> B(110L{111) = €02,03 = 0p,23

K12 = K2 < {goi0n 011} = Sy (1ioy} = (812,13 = oz,12} = {2 = Yorz } (3.17)
K13 == KaK3 <> E011),[111) = 803-,13 = Yo1:3

K23 = K3 <> {gp01;.10113 = Epooay. iy} = {813,238 = 03,23} = { V123 = vozs } -

For the contracted group we get the non-zero commutation relations

[Jo1, Jo2] = xg1 12 [Jat» Jos] = wo1J13

[Joz. Jos] = s das [V12, Jiz]l = k127
[Jo1, Jizl = =Jo [Jor, Ji3l = —Jo3
(3.18)
[Joz, Jna] = —Jps [Nz, Ji3] = —J13
[Joz, Jizl = 1120 [Jo3, J13] = k3o
(o3, f] = en 2 (13, J23] = k312 .

In summary, we have shown that the Lie algebras of the groups of motions of the
N-dimensional CK geometries can be obtained as a naturally distinguished subset of Z?‘V
contractions of the Lie algebra so(N + 1), according to the scheme described above. The
kinematical groups appear in this formalism as CK groups and they have been studied
elsewhere both from the point of view of Z, ® Z; graded contractions of so6(5) [7], and in
relation to CK groups and their quantum deformations (16, 17]. The relationship with the
present work can be established easily by considering the six possible Zs ® Z, subgradings
of the Z* grading we have considered for the case N = 4; only two are compatible with
the kinematical group requirements. We refer the interested reader to [7] for a more detailed
account.

A last question would be the following. Do the contraction parameters correspond
to physical parameters? There is indeed a direct connection in some cases. In the ysual
non-relativistic limit, 1/¢? appears as the contraction parameter A, associated to time-like
lines, while A; (associated to points) is to be identified with the curvature of the De Sitter
spacetime (either 1/R? or —1/R?) when contracting from the De Sitter to the Minkowski
space. Similar interpretations can also be made for other contraction parameters.
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